Side-Channel Leakage of Masked CMOS Gates

نویسندگان

  • Stefan Mangard
  • Thomas Popp
  • Berndt M. Gammel
چکیده

There are many articles and patents on the masking of logic gates. However, the existing publications assume that a masked logic gate switches its output no more than once per clock cycle. Unfortunately, this assumption usually does not hold true in practice. In this article, we show that glitches occurring in circuits of masked gates make these circuits susceptible to classical first-order DPA attacks. Besides a thorough theoretical analysis of the DPA-resistance of masked gates in the presence of glitches, we also provide simulation results that confirm the theoretical elaborations. Glitches occur in every CMOS circuit. Consequently, the currently known masking schemes for CMOS gates do not prevent DPA attacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pinpointing the Side-Channel Leakage of Masked AES Hardware Implementations

This article starts with a discussion of three different attacks on masked AES hardware implementations. This discussion leads to the conclusion that glitches in masked circuits pose the biggest threat to masked hardware implementations in practice. Motivated by this fact, we pinpointed which parts of masked AES S-boxes cause the glitches that lead to side-channel leakage. The analysis reveals ...

متن کامل

Masking at Gate Level in the Presence of Glitches

It has recently been shown that logic circuits in the implementation of cryptographic algorithms, although protected by “secure” random masking schemes, leak side-channel information, which can be exploited in differential power attacks [14]. The leak is due to the fact that the mathematical models describing the gates neglected multiple switching of the outputs of the gates in a single clock c...

متن کامل

Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage

Recent research has shown that cryptographers with glitches are vulnerable in front of Side Channel Attacks (SCA). Since then, several methods, such as Wave Dynamic Differential Logic (WDDL) and Masked Dual-Rail Pre-charge Logic (MDPL), have been presented to make circuits clean. In this paper, we propose a more accurate power model based on logic gates’ output transitions and divide it into pi...

متن کامل

Side-Channel Leakage in Masked Circuits Caused by Higher-Order Circuit Effects

Hardware masking is a well-known countermeasure against Side-Channel Attacks (SCA). Like many other countermeasures, the side-channel resistance of masked circuits is susceptible to low-level circuit effects. However, no detailed analysis is available that explains how, and to what extent, these low-level circuit effects are causing side-channel leakage. Our first contribution is a unified and ...

متن کامل

A Dynamic and Differential CMOS Logic Style to Resist Power and Timing Attacks on Security IC's

We present a dynamic and differential CMOS logic style, which has a signal independent switching behavior. It is shown that during each clock cycle, power consumption and all circuit characteristics, such as leakage current, instantaneous current and input-output delay are identical and independent of the logic value and the sequence of the input data. Implementing the encryption module in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005